EPA Region 5 Records Ctr.

PHASE II SUBSURFACE INVESTIGATION
Performed at
160 East Illinois Street
Chicago, Illinois
Performed for
Ms. Laurie Bain
Benchmark Project # 00299B

BENCHMARK ENVIRONMENTAL SERVICES, INC.

ENVIRONMENTAL • GEOTECHNICAL • ENGINEERING

August 15, 2000

Ms. Laurie Bain Bain Environmental, Inc. 5315 N. Clark Street Suite 144 Chicago, IL 60640

Subject:

Phase Il Subsurface Investigation Performed at 160 E. Illinois

Street, Chicago, Illinois, Benchmark Project # 00299B

Dear Ms. Bain:

Enclosed is the report for the Phase II Subsurface Investigation performed by Benchmark Environmental Services, Inc., at the above referenced address. This Investigation was performed to address concerns outlined within a prior Phase I Environmental Assessment (project #00273).

The second phase of this investigation includes performing hand Augured soil borings / samplings in order to investigate the possibility of gross contamination in soils surrounding the UST, near the water pump, and near the silver recovery system.

If you should have any questions regarding this report, please feel free to contact the undersigned at 1-800-400-5811.

Respectfully,

Benchmark Environmental Services, Inc.

William Liniewicz, Master CHMM

Principal

Walter Karla, CHMM

Vice President -

Remediation / Risk Assessment

mgn

42199 North Lake Avenue P.O. Box 824 Antioch, IL 60002 Phone: (847) 838-5811

Fax: (847) 838-5815

PHASE II SUBSURFACE INVESTIGATION

Performed at 160 East Illinois Street Chicago, Illinois

Retained by;
Ms. Laurie Bain
Bain Environmental, Inc.
5315 N. Clark Street
Suite 144
Chicago, IL 60640

By:
Benchmark Environmental Services, Inc.
42199 N. Lake Avenue
P.O. Box 824
Antioch, IL 60002

Submitted on August 15, 2000 by:
Mark G. Neuses
Environmental Scientist

Reviewed on August 15, 2000 by: William Liniewicz, Master CHMM Principal

Project # 00299B

Section	<u>on</u>	<u>Page</u>
I.	Introduction	3
II.	Methodology A. Subsurface Soil Borings B. Soil Sample Collection C. Preserving & Transporting Laboratory Soil Samples D. Laboratory Analysis	4 4 4 5 6
111.	Data Review	7
IV.	Geology	10
V.	Conclusion & Recommendations	12
VI.	Qualifications	13
VII.	 Appendix Site Photographs Site Location Map USDA Soil Survey Map ISGS "Potential for Contamination of Shallow Aquifers in Illinois USGS Topographic Map Soil Boring Locations Diagram Analytical Results Chain of Custody 	14 s" M ap

I. Introduction

Benchmark Environmental Services, Inc. (Benchmark) was retained by Ms. Laurie Bain, of Bain Environmental, Inc., Chicago, Illinois, to perform a Phase II Subsurface Investigation at 160 E. Illinois Street, Chicago, Illinois. Benchmark previously performed a Phase I Environmental Assessment (project #00421) which resulted in the following recognized environmental conditions regarding the subject site:

The silver recovery system located in the basement of the subject site appears to have leakage / spillage problems. Remaining waste should be properly contained and disposed of. The concrete floors in the immediate area are cracked, possibly allowing migration to subsurface soils.

The water pump oily discharge to below grade soils should be stopped immediately. A Phase II Investigation would be necessary to determine any impacts to subsurface soils.

The boiler room houses a vaulted 5,000 gallon fuel oil underground storage tank (UST). Per Mr. Cheuvront, this UST was last utilized approximately ten (10) years ago. No leakage/spillage was observed adjacent to this UST. As per Mr. Dale Tanke of the OSFM a heating oil UST which was used after January 1, 1974 requires registration. A late registration fee of \$500.00 must also be submitted. Currently, there is a deadline of 2001 for required upgrading of the UST. Pending legislation may waive this requirement for pre 1995 UST's. Benchmark recommends tank registration and permanent closure of the system.

Mr. Walter Karla, Benchmark Vice President, and Sean Beinecke, Hydrogeologist, arrived at the subject site at 10:00 a.m. on July 27, 2000. Soil boring locations were determined adjacent to the 5,000 gallon heating fuel oil UST, near the silver recovery system, as well as near the water pump. See the Soil Boring locations diagram in Appendix for specific locations of each soil boring.

A total of four (4) soil samplings were performed on-site. Three of these soil samplings were performed using an electric concrete coring machine and a stainless steel Hand Auger. Two (2) soil samplings (C-2 at 1' BSG and C-2 at 2' BSG) were performed adjacent to the silver recovery system. One (1) soil sampling (C-1) was performed adjacent to the water pump. One soil sampling was performed inside of the brick enclosure of the UST. Soils were field screened, with additional samples taken for laboratory analysis. Four (4) soil samples were submitted to Great Lake Analytical, in Buffalo Grove, Illinois, for analysis of compounds regulated by the Illinois Environmental Protection Agency (IEPA).

The samples were analyzed for the following IEPA specified indicator contaminants:

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

PNAs - Polynuclear Aromatic Hydrocarbons

PCBs - Polychlorinated Biphenyl's

TCLP Metals

Total Metals

II. Methodology

During the course of the Phase II Subsurface Investigation, field screened samples were procured continuously, from the surface grade to a depth of 2' - 3' below surface grade (BSG). Laboratory samples were obtained at the bottom of the borings or the groundwater interface, in order to investigate if gross contamination in soils surrounding the UST, near the water pump, and near the silver recovery system is present.

A. Subsurface Soil Borings

Three (3) soil borings were performed utilizing an electric concrete coring machine and a stainless steel Hand Auger.

The boring locations were chosen in accordance with a predetermined plan. Soil boring / sampling locations were determined inside of the enclosure of the 5,000 gallon heating fuel oil UST, adjacent to the silver recovery system, as well as adjacent to the water pump to illustrate if gross contamination is present or non-present in soils in these areas.

A total of four (4) soil samples were obtained for laboratory analysis. One sampling was taken from the backfill of the bricked in UST enclosure. This sample was analyzed for BTEX and PNA compounds. One sample was taken from a soil boring performed adjacent to the water pump at approximately 3' below surface grade (BSG). This sample was analyzed for BTEX, PNA and PCB compounds. Two samples were taken from a soil boring performed adjacent to the silver recovery system. One sample was taken from 1' BSG, another was taken from 2' BSG. These samples were analyzed for TCLP Metals and Total Metals.

B. Soil Sample Collection

Soil samples were obtained at 1'-2' intervals, from surface grade to a depth of 3' BSG.

Benchmark personnel performed the hand auguring operation, collected the soil samples, visually inspected the soil samples for signs of contamination, and classified each soil sample in terms of texture and color in accordance with the Unified Soil Classification System (ASTM D-2487-93 and D-2488-93).

C. Preserving & Transporting Laboratory Soil Samples

Laboratory soil samples were obtained at depths believed to be the highest concentration of contaminants or the possible points of the migration of groundwater for all of the borings. Soil samples for BTEX were collected per EPA SW-846 Method 5035 – Purge and Trap and Extraction for Volatile Organics in Soil and Waste Samples. Preweighed/Preserved 40ml vials (with sodium bisulfate) are filled in the field with 3-5 grams of soil. An additional 2 oz. container with 25 ml of methanol is filled with 25 – 30 grams of soil for BTEX analysis. PNA analysis is performed on the soils contained in the 4 oz. container. Soil samples for PCB compound and Metals analysis were placed into unpreserved 4 oz. containers. The soil samples were then immediately placed into an insulated cooler filled with ice, and subsequently transported to Great Lakes Analytical, Buffalo Grove, Illinois.

Benchmark personnel preserved the soil samples immediately after they were obtained in the field and transported and handled the samples in accordance with the Standard Practices for Preserving and Transporting Soil Samples (ASTM D-4220-95). The following is a summary of the procedures Benchmark personnel performed to preserve, transport and properly handle the soil samples obtained in the field:

- All samples were labeled with the following markings prior to transporting them:
 - job name / number
 - sampling date
 - sample boring number / location
 - depth / elevation
 - special shipping / handling instructions
- All samples were preserved before transportation in laboratory provided, sealed, moistureproof glass-plastic containers of sufficient thickness and strength to ensure against breakage and moisture loss. The glass-plastic container lids are teflon lined.
- All samples were transported in insulated coolers to prevent freezing, thawing or undesirable temperature changes from affecting the samples. The insulated coolers were filled with ice to prevent the volatilized organic constituents from being released during extreme weather conditions. The samples were protected against vibration and shock by using urethane foam as a cushioning material.

Benchmark personnel transported and handled all soil samples using proper Chain-of-Custody Procedures in accordance with the Standard Guide for Sampling Chain-of-Custody Procedures (ASTM D-4840-95).

D. Laboratory Analysis

The four (4) soil samples were analyzed for the following Illinois Environmental Protection Agency (IEPA) specified indicator contaminants:

Two of the four soil samples were analyzed for:

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

The BTEX samples were analyzed by Gas Chromatography using Method "SWA-846 Method 5035".

Two of the four soil samples were analyzed for:

PNAs - Polynuclear Aromatic Hydrocarbons

The PNA samples were analyzed by High Pressure Liquid Chromatography using Method "EPA 8310".

One of the four soil samples was analyzed for:

PCBs - Polychlorinated Biphenyls

The PCB samples were analyzed using Method "EPA 8082".

Two of the four soil samples were analyzed for:

TCLP Metals – Toxicity Characteristic Leaching Procedure Metals

The TCLP Metals samples were analyzed using "EPA 1311/6000/7000 Series Methods".

Two of the four soil samples were analyzed for:

Total Metals

The Total Metals samples were analyzed using "EPA 6000/7000 Series Methods".

III. Data Review

The BTEX, PNA, and PCB compounds are regulated by the IEPA. Analytical results are summarized below and on the following pages. Laboratory analytical reports are attached in the Appendix.

Laboratory analysis illustrated minor impacts to the sample obtained from inside the bricked UST enclosure, but all well below IEPA TACO Tier 1 CUOs.

Laboratory analysis illustrated that the sample taken from near the water pump exhibited minor concentrations of Total Xylenes and various PNA compounds well below the current IEPA TACO Tier 1 Cleanup Objectives (CUOs). This sample exhibited concentrations of Benzo(a)Pyrene above the IEPA TACO Tier 1 Cleanup Objectives for Ingestion. This sample exhibited no PCB impacts.

Laboratory analysis illustrated that the samples taken from near the silver recovery system exhibited concentrations of Lead, Cadmium, and Silver above the IEPA TACO Tier 1 CUOs for the sample taken at 1' below surface grade (BSG). The sample taken from 2' BSG exhibited concentrations of Cadmium and Silver above the IEPA TACO Tier 1 CUOs, but at a lower concentration than the sample taken from 1' BSG.

BTEX; Benz	ene, Toluen	e. Ethylbenz	Tabl ene, Xylenes		ar Aromatic	Hydrocarbo	ns (PNAs)	
	Tier 1 Soil Remediation Objectives for industrial / Commercial Properties		Tier 1 Soil Remediation Objectives for Residential Properties		Groundwate	onent of the er Ingestion oute Values	Soil Samples (mg/kg)	
Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	UST backfill	C-1 water pump
				oluene, Ethyl		<u> para di manggio di manggio na penggio penggi</u>		
Benzene	200	1.5	22	0.8	0.03	0.17	<0.025	<0.025
Toluene	410,000	650	16,000	650	12	29	<0.025	<0.025
Ethylbenzene	20,000	400	7,800	400	13	19	<0.025	<0.025
Xylenes	1,000,000	410	160,000	410	150	150	0.0257	0.027
		PNAs - I	Polynuclear A	romatic Com	pounds			
Acenaphthene	120,000		4,700		570	2,900	0.0421	0.153
Acenaphthylene							<0.200	<0.200
Anthracene	610,000		23,000		12,000	59,000	<0.0300	<0.0300
Benzo(a)anthracene	8		0.9		2	8	<0.0300	0.258
Benzo(a)pyrene	0.8		0.09		8	82	<0.0300	0.416
Benzo(b)fluoranthene	8		0.9		5	25	<0.0300	0.266
Benzo(ghi)perylene							<0.0300	0.309
Benzo(k)fluoranthene	78		9		49	250	<0.0300	0.154
Chrysene	780		88		160	800	< 0.0300	0.305
Dibenzo(a,h)anthracene	0.8		0.09		2	7.6	<0.0300	0.0671
Fluoranthene	82,000		3,100		4,300	21,000	0.111	0.914
Fluorene	82,000		3,100		560	2,800	0.0504	0.0346
Indeno(1,2,3-cd)pyrene	8		0.9		14	69	<0.0300	0.175
Naphthalene	82,000		3,100		84	420	0.0308	<0.0300
Phenanthrene					<u></u>		0.398	0.287
Pyrene	61,000		2,300		4,200	21,000	<0.0300	0.570

	Total Me	itals & Toxicity C	Table 2 haracteristic Lea	iching Procedui	e Metals		
	Objectives for	Remediation or Residential erties	Soil Compo Groundwate Exposure Ro	r Ingestion	Soil Sample Results (mg/kg)		
Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/L)	Class II (mg/L)	C-2 1' BSG	C-2 2' BSG	
		To	tal Metals(mg/k	g)			
Arsenic	0.4	750			<2.50	<2.50	
Barium	5,500	690,000			39.10	<25.0	
Cadmium	78	1,800			<0.50	<0.50	
Chromium	390	270			20.30	3.20	
Lead	400	400			650	334	
Selenium	390			76.44	<2.50	<2.50	
Silver	390				63.8	2.65	
Mercury	23	10			7.67	15.7	
		T	CLP Metals(mg/	L)			
Arsenic			0.05	0.2	<0.1	<0.1	
Barium			2.0	2.0	<1.0	<1.0	
Cadmium			0.005	0.05	0.0301	0.0209	
Chromium			0.1	1.0	<0.1	<0.1	
Lead			0.0075	0.1	<0.1	<0.1	
Selenium			0.05	0.05	<0.05	<0.05	
Silver			0.05		111	11.1	
Mercury			0.002	0.01	0.00088	0.00035	

Table PCB Analysis Re	
Sample Boring B-2	Total PCB (µg/kg)
PCB 1016	< 25
PCB 1221	< 25
PCB 1232	< 25
PCB 1242	< 25
PCB 1248	< 25
PCB 1254	< 25
PCB 1260	< 25

Analytical results are attached in the Appendix

IV. Geology

USDA Soil Survey Map

According to the U.S. Department of Agriculture (USDA) Soil Conservation Service, the subject site area belongs to the Urban Land – Selma – Oakville soil series (15).

The Urban Land – Selma – Oakville soil series (15) are built up and deep, nearly level poorly drained soils that have sandy and silty subsoils formed in glacial lake sediment and in glacial outwash. The surface layer is a very dark grayish brown to black fine sand. The subsoil is approximately 36 inches thick. The upper part is a yellowish brown fine sand and the lower part is brownish yellow medium sand. Below the subsoil about 60 inches of fine to medium grain yellowish brown silty sand is present. The underlying material contains sandy loam, silty clay loam, and gravel. This series also includes a small percentage of poorly drained Mundelein and Hoopeston soils. The Mundelein and Hoopeston soils are highly organic, poorly drained soils.

USGS Topographic Map

Benchmark personnel reviewed the United States Geological Survey (USGS) Topographic Map for the subject site. The map illustrated the area to be generally level, with an elevation of approximately 600' above sea level. Regional groundwater flow is assumed to be towards the east. Local groundwater flow paths may vary and would require a site specific study to determine.

ISGS Circular 532

The Illinois State Geological Survey (ISGS) Circular 53:2 – "Potential for Contamination of Shallow Aquifers in Illinois" map was reviewed. This map illustrated that the subject site is located in a "D2" area. Areas designated as "D2" contain uniform, relatively impermeable silty or clayey till, or other fine-grained materials to a depth of more than

20' BSG. Underlying soils consist of compact, dense basal till that is commonly fine grained. Potential for contamination of shallow aquifers in "D2" areas is low due to the low hydraulic conductivity of the soils.

Copies of the USDA Soil Survey, USGS Topographic Map, and ISGS "Potential for Contamination of Shallow Aquifers in Illinois" maps for the subject site are included in the Appendix section of this report.

V. Conclusion and Recommendations

Benchmark Environmental Services, Inc. (Benchmark) was retained by Ms. Laurie Bain, of Bain Environmental, Inc., Chicago, Illinois, to perform a Phase II Investigation / Radiological Survey at 160 E. Illinois Street, Chicago, Illinois. This Investigation was performed to address concerns outlined within a prior Phase I Environmental Assessment (project #00273).

Boring locations were determined, to illustrate if contamination is present or nonpresent adjacent to the UST, near the silver recovery system, and near the water pump at the subject site.

Samples were submitted to field screening as well as physical characterization such as odor, staining, etc. Field screening and physical characterization illustrated no impacts.

Conclusions:

Laboratory analysis illustrated minor impacts to the sample obtained from inside the bricked UST enclosure. The UST appears to be situated upon the concrete floor slab, limiting any migration of contaminants to subsurface soils.

Laboratory analysis illustrated that the sample taken from near the water pump exhibited minor concentrations of Total Xylenes and various PNA compounds well below the current IEPA TACO Tier 1 Cleanup Objectives (CUOs). This sample exhibited concentrations of Benzo(a)Pyrene above the IEPA TACO Tier 1 Cleanup Objectives for Ingestion. This sample exhibited no PCB impacts.

Laboratory analysis illustrated that the samples taken from near the silver recovery system exhibited concentrations of Lead, Cadmium, and Silver above the IEPA TACO Tier 1 CUOs for the sample taken at 1' below surface grade (BSG). The sample taken from 2' BSG exhibited concentrations of Cadmium and Silver above the IEPA TACO Tier 1 CUOs, but at a lower concentration than the sample taken from 1' BSG.

Recommendations:

The elevated levels of metals at the silver recovery system do not pose a health concern at present, as the contaminants are located below a concrete floor slab. Future excavation of these soils would require handling as a "Special Waste" per IEPA regulations. Due to the limited extent of operations and low mobility of the metals, Benchmark believes that the impacted area is of minimal hazard. As previously stated in the Phase I Site Assessment, the silver recovery system and remaining product should be properly removed and the surface area decontaminated. As the UST exhibited only minor leakage, and coupled with the fact that the UST is underlain by a concrete floor slab, Benchmark would recommend registration, permitting and removal or abandonment. Registration can be performed at the time of removal / abandonment permitting.

VI. Qualifications

This report was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by professional consultants practicing in this or similar localities. The findings of this report are valid as of the presentation date. Changes in the condition of the property can occur with the passage of time. These changes can result from changes in legislation, new technologies, or from other reasons. Accordingly, our findings of this report may be validated, wholly or partially, by changes outside of our control.

The interpretations and conclusions contained in this report are based upon the result of independent laboratory tests, and analysis, intended to detect the presence and/or concentrations of certain chemical constituents in the samples taken from the subject property. Benchmark has no control over such testing and analysis, and therefore, disclaims any responsibility for errors and omissions arising therefrom.

Subsurface investigations cannot fully reveal what is located beneath the surface. Depending on sampling locations, some layers and materials may not be encountered, and therefore may not have been sampled or analyzed.

This report has been prepared for the aforementioned client, and may not be used for purposes other than the client's intended use without permission.

This report is issued with the understanding that it is the responsibility of the owners to ensure that the information and recommendations contained herein are brought to the attention of the appropriate regulatory agencies.

VIII. Appendix

- Site Photographs
- Site Location Map
- USDA Soil Survey Map
- ISGS "Potential for Contamination of Shallow Aquifers in Illinois" Map
- USGS Topographic Map
- Soil Boring Locations Diagrams (Tables 1, 1B, & 1C)
- Analytical Results
- Chain of Custody

SITE PHOTOGRAPHS

Opening up bricked in enclosure

Repaired enclosure after sampling

SITE PHOTOGRAPHS

Performing Hand Auguring C-1

Repaired Boring C-1

SITE PHOTOGRAPHS

Performing Coring of Boring C-2

Hand Auguring Boring C-2

Site Location Map

Copyright © 1988-2000 Microsoft Corp. and/or its suppliers. All rights reserved. http://www.microsoft.com/Streets
© Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. © 1999 Navigation Technologies. All rights reserved. This data includes information taken with permission from Canadian authorities © Her Majesty the Queen in Right of Canada. © Copyright 1999 by Compusearch Micromarketing Data and Systems Ltd.

USDA SOIL SURVEY MAP

ISGS "POTENTIAL FOR CONTAMINATION OF SHALLOW AQUIFERS IN ILLINOIS" MAP

A Company of the Company of the

Borrys done
but no rods
meas

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services	Project:	160 E. Illinois	Sampled: 7/27/00	
42199 N. Lake Ave.	Project Number:	N/A	Received: 7/31/00	
Antioch, IL 60002	Project Manager:	Sean Beineke	Reported: 8/7/00 12:40	

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
Bricked in UST Backfill	B007381-01	Soil	7/27/00
C-1/Water Pump	B007381-02	Soil	7/27/00
1° C-2/Silver Recovery System	B007381-03	Soil	7/27/00
2' C-2/Silver Recovery System	B007381-04	Soil	7/27/00

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services	Project:	160 E. Illinois	Sampled:	7/27/00
42199 N. Lake Ave.	Project Number:	N/A	Received:	7/31/00
Antioch, IL 60002	Project Manager:	Sean Beineke	Reported:	8/7/00 12:40

Total Metals by EPA 6000/7000 Series Methods Great Lakes Analytical

	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
13 6 4 60								
1' C-2/Silver Recovery System			<u>B00738</u>	<u>81-03</u>			<u>Soil</u>	
Arsenic	0080025	8/2/00	8/2/00	EPA 6010B	2.50	ND	mg/kg	
Barium	10	11	12	EPA 6010B	25.0	39.1	10	
Cadmium	n	н	H	EPA 6010B	0.500	ND	Ħ	
Chromium	и	и	17	EPA 6010B	0.500	20.3	**	
Lead	19	11	11	EPA 6010B	1.00	650	n	
Selenium	11	11	11	EPA 6010B	2.50	ND	n	
Silver	11	31	11	EPA 6010B	2.50	63.8	n	
Mercury	0080078	8/4/00	8/4/00	EPA 7471A	2.04	7.67	11	G1,G12
2' C-2/Silver Recovery System			B00738	1-04			<u>Soil</u>	
Arsenic	0080025	8/2/00	8/2/00	EPA 6010B	2.50	ND	mg/kg	
Barium	17	11	n	EPA 6010B	25.0	ND	n	
Cadmium	10	н	II .	EPA 6010B	0.500	ND	it .	
Chromium	n	н		EPA 6010B	0.500	3.20	n	
Lead	н	19	n	EPA 6010B	1.00	334	11	
Selenium		n	ir .	EPA 6010B	2.50	ND	11	
Silver	n	u	10	EPA 6010B	2.50	2.65	"	
Mercury	0080078	8/4/00	8/4/00	EPA 7471A	4.04	15.7	tt	G1,G12

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services	Project:	160 E. Illinois	Sampled:	7/27/00	
42199 N. Lake Ave.	Project Number:	N/A	Received:	7/31/00	
Antioch, IL 60002	Project Manager:	Sean Beineke	Reported:	8/7/00 12:40	

TCLP Metals by EPA 1311/6000/7000 Series Methods Great Lakes Analytical

	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
1' C-2/Silver Recovery System			B0073				<u>Soil</u>	
Arsenic	0080051	8/3/00	8/3/00	EPA 6010B	0.100	ND	mg/l	
Barium	19	н	"	EPA 6010B	1.00	ND	11	
Cadmium	10	н	17	EPA 6010B	0.0100	0.0301	н	G1
Chromium	19	11	н	EPA 6010B	0.100	ND	10	G1
Selenium	n	11	IF	EPA 6010B	0.100	ND -	11	
Silver	H*	18	п	EPA 6010B	0.0500	ND	н	
Lead	n	н	19	EPA 7421	12.1	111	"	G1,G12,G15,G2
Mercury	0080048	n	15	EPA 7470A	0.000200	0.000881	Ħ	
2' C-2/Silver Recovery System			B00738	31-04			<u>Soil</u>	
Arsenic	0080051	8/3/00	8/3/00	EPA 6010B	0.100	ND	mg/l	
Barium	#	H	38	EPA 6010B	1.00	ND	н	
Cadmium	н	19	n	EPA 6010B	0.0100	0.0209	H.	G1
Chromium	H	19	H	EPA 6010B	0.100	ND	**	G1
Selenium	11	10	10	ÉPA 6010B	0.100	ND	n	
Silver	N	11	17	EPA 6010B	0.0500	ND	Ħ	
Lead	19	n	n	EPA 7421	2.52	11.1	W	G1,G12,G15,G2
Mercury	0080048	11*	10	EPA 7470A	0.000200	0.000345	10	

Great Lake Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project: 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

Polychlorinated Biphenyls by EPA Method 8082 Great Lakes Analytical

	Batch	Date	Date	Surrogate	Reporting	- I	77 1).
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
C-1/Water Pump			B0073	31-02			<u>Soil</u>	
PCB-1016	0080009	8/1/00	8/1/00		25.0	ND	ug/kg	
PCB-1221	10	n	11		25.0	ND	n,	
PCB-1232	n	n	10		25.0	ND	19	
PCB-1242	w	11	11		25.0	ND	IT	
PCB-1248	**	11	н		25.0	ND	п	
PCB-1254	н .	H .	#		25.0	ND	37	
PCB-1260	**	"	н		25.0	ND	If	
Surrogate: Tetrachloro-meta-xylene		"	н	25.1-63.6		59.9	%	
Surrogate: Decachlorobiphenyl	#	n	"	12.8-70.4		71.9	*	O5

Great Laires Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project: 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

Polynuclear Aromatic Compounds by EPA Method 8310 Great Lakes Analytical

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
Bricked in UST Backfill			B00738	R1 .01			<u>Soil</u>	<u>G15</u>
Acenaphthene	0080065	8/3/00	8/4/00	<u> </u>	30.0	42.1	ug/kg	<u> 717</u>
Acenaphthylene	4	0/3/00	11		200	ND	ug/Ag	
Anthracene	11	19	10		30.0	ND	17	
Benz (a) anthracene	n	11	l r		30.0	ND	H	
Benzo (a) pyrene	II .	и	**		30.0	ND .	n	
Benzo (b) fluoranthene	11	D.	37		30.0	ND	n	
Benzo (ghi) perylene	11	п	n		30.0	ND	10	
Benzo (k) fluoranthene	l t	17	II		30.0	ND	И	
Chrysene	u	u	16		30.0	ND	11	
Dibenz (a,h) anthracene	II.	н	11		30.0	ND	H	
Fluoranthene	n	10	"		30.0	111	10	G2
Fluorene	n	11	10		30.0	50.4	н	
Indeno (1,2,3-cd) pyrene		if			30.0	ND	н	
Naphthalene	n .	11	1)		30.0	30.8	n	
Phenanthrene	n	11	н		30.0	398	п	
Pyrene	н	н			30.0	ND	m	
Surrogate: Carbazole	"	"	"	37.1-163		81.2	%	
C-1/Water Pump			B00738	1-02			<u>Soil</u>	G15
Acenaphthene	0080065	8/3/00	8/4/00	- 	30.0	153	ug/kg	
Acenaphthylene	19	n	n		200	ND	"	
Anthracene	n	18	35		30.0	ND	H	
Benz (a) anthracene	н	11	17		30.0	258	11	
Benzo (a) pyrene	19	н	n		30.0	416	н	
Benzo (b) fluoranthene	n	12	11		30.0	266	"	
Benzo (ghi) perylene	19	19	11		30.0	309	18	
Benzo (k) fluoranthene	н	н	II .		30.0	154	19	
Chrysene	n	H	19		30.0	305	H	
Dibenz (a,h) anthracene	11	н	n		30.0	67.1	10	
Fluoranthene	11		11		30.0	914	it .	G2
Fluorene -	n	n	D .		30.0	34.6	n	
Indeno (1,2,3-cd) pyrene	10	N	н		30.0	175	to	
Naphthalene	n	10	H		30.0	ND	II.	
Phenanthrene	и	11	u		30.0	287	н	
Pyrene	11	11	U		30.0	570	n	
Surrogate: Carbazole	#	"	79	37.1-163		53.5	%	

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services	Project:	160 E. Illinois	Sampled:	7/27/00	
42199 N. Lake Ave.	Project Number: 1	N/A	Received:	7/31/00	
Antioch, IL 60002	Project Manager:	Sean Beineke	Reported:	8/7/00 12:40	

BTEX by EPA Method 5035/8021B Great Lakes Analytical

	Batch	Date	Date	Surrogate	Reporting	-	**	37 . *
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
Bricked in UST Backfill			B0073	81-01			Soil	
Benzene	0080005	8/1/00	8/1/00		25.0	ND	ug/kg	
Toluene	11	н	н		25.0	ND	н	
Ethylbenzene	10	IF.	10		25.0	ND	"	
Total Xylenes	17	19	11		25.0	25.7	17	
Surrogate: 4-BFB	H	"	"	74.3-166		167	%	O5
C-1/Water Pump			B00738	<u>31-02</u>			Soil	
Benzene	0080005	8/1/00	8/1/00		25.0	ND	ug/kg	
Toluene	n	II .	н		25.0	ND	n	
Ethylbenzene	10	17	17		25.0	ND	Ħ	
Total Xylenes	н	n	H		25.0	27.0	H .	
Surrogate: 4-BFB	и	п	#	74.3-166		107	%	

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project: 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

Total Metals by EPA 6000/7000 Series Methods/Quality Control Great Lakes Analytical

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes
					_					
Batch: 0080025		ared: 8/2/00	2		Extract	tion Method: EP	<u>A 3050B</u>			
Blank	<u>0080025-B</u>	LK1								
Arsenic	8/2/00			ND	mg/kg	2.50				
Barium	н			ND	H	25.0				
Cadmium	H			ND	10	0.500				
Chromium	n			ND	II .	0.500				
Lead	н			ND	11	1.00				
Selenium	H			ND	"	2.50				
Silver	н			ND	11	2.50				
LCS	0080025-B	S1								
Arsenic	8/2/00	133		129	mg/kg	59.7-140	97.0			
Barium	0	250		250	"	63.5-131	100			
Cadmium	It	250		240	и	68.6-128	96.0			
Chromium	10	250		244	19	67.9-130	97.6			
Lead	n	250		239	n	65.6-129	95.6		,	
Selenium	n	70.0		70.3	It	57.1-141	100			
Silver	н	250		214	n	29.4-142	85.6			
Matrix Spike	0080025-M	(S1 B0	08016-01							
Arsenic	8/2/00	133	ND	101	mg/kg	24.2-138	75.9			
Barium	II.	250	47.7	264	#	14.1-160	86.5			
Cadmium	н	250	ND	190	IT	42.0-115	76.0			
Chromium	11	250	12.9	205	11	18.7-130	76.8			
Lead	н	250	4.55	202	11	29.5-129	79.0			
Selenium	R	70.0	ND	55.5	11	29.0-124	79.3			
Silver	и	250	ND	134	If	24.7-124	53.6			
Matrix Spike Dup	0080025-M	SD1 B0	<u>08016-01</u>							
Arsenic	8/2/00	131	ND.	85.2	mg/kg	24.2-138	65.0	38.9	15.5	
Barium	"	248	47.7	229	4	14.1-160	73.1	65.1	16.8	
Cadmium	. u	248	ND	162	17	42.0-115	65.3	22.0	15.1	
Chromium	II	248	12.9	176	н	18.7-130	65.8	36.8	15.4	
Lead	н	248	4.55	170	17	29.5-129	67.1	50.6	16.3	
Selenium	11	69.3	ND	.48.5		29.0-124	70.0	47.2	12.5	
Silver	11	248	ND	126	n	24.7-124	50.8	33.7	5.36	
JUVCI	**	4 46	MD	120		24.7-124	20.0	JJ. /	J.J.	

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services	Project:	160 E. Illinois	Sampled: 7/27/00
42199 N. Lake Ave.	Project Number:	N/A	Received: 7/31/00
Antioch, IL 60002	Project Manager:	Sean Beineke	Reported: 8/7/00 12:40

TCEP Metals by EPA 1311/6000/7000 Series Methods/Quality Control Great Lakes Analytical

	Date	• •		QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
D . I					_				
Batch: 0080048	Date Prepa		<u>)0</u>		Extrac	ction Method: EP	<u>A 7470A</u>		
Blank	<u>0080048-B</u>	LK1			_				
Mercury	8/3/00			ND	mg/l	0.000200			
<u>LCS</u>	0080048-B	<u>S1</u>							
Mercury	8/3/00	0.00100		0.000988	mg/l	78.6-123	98.8		
Matrix Spike	0080048-M	I <u>S1</u> E	008018-01			·			
Mercury	8/3/00	0.00100	0.000235	0.00134	mg/l	79.5-134	110		
Matrix Spike Dup	0080048-M	ISD1 B	008018-01						
Mercury	8/3/00	0.00100	0.000235	0.00134	mg/l	79.5-134	110	8.21	0
Batch: 0080051	Date Prepa	red: 8/3/0	<u>o</u>		Extrac	tion Method: EP	A 3015		
<u>Blank</u>	0080051-B	<u>LK1</u>							
Arsenic	8/3/00			'ND	mg/l	0.100			
Barium	11			ND	11	1.00			
Cadmium	ıt			ND	11	0.0100			
Chromium	n			ND	н	0.100			
Selenium	17			ND	11	0.100			
Silver	н			ND	11	0.0500			
Lead	1f			ND	10	0.00500			
LCS	0080051-BS	<u>51</u>							
Arsenic	8/3/00	0.589		0.587	mg/l	72.9-133	99.7		
Barium	Ħ	1.11		1.11	10	67.5-143	100		
Cadmium	n	0.558		0.553	11	70.7-138	9 9 .1		
Chromium	+ 11	1.12		1.14		62.1-152	102		
Selenium	n	0.311		0.305	n	70.4-144	98.1		
Silver	н	0.567		0.623	19	64.9-158	110		•
Lead	н	0.0333		0.0360	n	85.0-152	108		
Matrix Spike	0080051-M	S1 B	<u>007381-04</u>						
Arsenic	8/3/00	0.589	ND	0.768	mg/l	62.6-137	130		
Barium	H	1.11	ND	1,67	11	51.3-154	150		
Cadmium		0.558	0.0209	0.751	Ħ	72.9-127	131		
Chromium	11	1.12	ND	1.48	17	73.6-129	132		
Selenium	n.	0.311	ND	0.457	19	54.3-155	147		
Silver	ıı	0.567	ND	0.287	н	26.8-167	50.6		
· .									

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project: 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

TCLP Metals by EPA 1311/6000/7000 Series Methods/Quality Control Great Lakes Analytical

	Date	Spike	Sample	QC	** .	Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike (continued)	0080051-M	IS1 B(007381-04							
Lead	8/3/00	0.0333	11.1	10.9	mg/l	57.0-1 <i>7</i> 2	NR			
Matrix Spike Dup	0080051-M	ISD1 BO	07381-04							
Arsenic	8/3/00	0.589	ND	0.763	mg/l	62.6-137	130	20.2	0	
Barium	**	1.11	ND	1.65	10	51.3-154	149	26.7	0.669	
Cadmium	n	0.558	0.0209	0.755	11	72.9-127	132	21.2	0.760	
Chromium		1.12	ND	1.48	11	73.6-129	132	16.1	0	
Selenium	tt	0.311	ND	0.433	н	54.3-155	139	27.9	5.59	
Silver	. #	0.567	ND	0.304	11	26.8-167	53.6	34.9	5.76	
Lead	11	0.0333	11.1	12.6	**	57.0-172	NR	24.2	NR	

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project: 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

Polychlorinated Biphenyls by EPA Method 8082/Quality Control Great Lakes Analytical

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0080009	Date Prepai		2		Extract	ion Method: EP	<u> 4 3550B</u>			
Blank	0080009-BL	<u>.K1</u>								
PCB-1016	8/2/00			ND	ug/kg	25.0				
PCB-1221	н .			ND	n	25.0				
PCB-1232	н			ND	11	25.0				
PCB-1242	11			ND	N	25.0				
PCB-1248				ND	н	25.0				
PCB-1254	н			ND	H	25.0				
PCB-1260	11			ND	II .	25.0				
Surrogate: Tetrachloro-meta-xylene	"	16.5		11.6	11	25.1-63.6	70.3		-	
Surrogate: Decachlorobiphenyl	n	16.5		13.0	"	12.8-70.4	78.8			
LCS	0080009-BS	1								
PCB-1016	8/2/00	80.7		58.0	ug/kg	10.0-135	71.9			
PCB-1260	11	80.7		64.6	"	10.0-118	80.0			
Surrogate: Tetrachloro-meta-xylene	N	16.1		11.5	"	25.1-63.6	71.4			
Surrogate: Decachlorobiphenyl	"	16.1		14.8	*	12.8-70.4	91.9			
Matrix Spike	0080009-MS	1 B0	<u>07378-07</u>							
PCB-1016	8/2/00	85.0	ND	47.8	ug/kg	14.3-134	56.2			
PCB-1260	n	85.0	ND	73.9	11	10.0-173	86.9			
Surrogate: Tetrachloro-meta-xylene	"	17.0		12.1	"	25.1-63.6	71.2			
Surrogate: Decachlorobiphenyl	n	17.0		10.6	#	12.8-70.4	62.4			
Matrix Spike Dup	0080009-MS	<u>D1 B0</u>	<u>07378-07</u>							
PCB-1016	8/2/00	84.4	ND	40.6	ug/kg	14.3-134	48.1	74.2	15.5	
PCB-1260	If	84.4	ND	78.4	"	10.0-173	92.9	51.5	6.67	
Surrogate: Tetrachloro-meta-xylene	,,	16.9		13.0	"	25.1-63.6	76.9			
Surrogate: Decachlorobiphenyl	"	16.9		11.8	"	12.8-70.4	69.8			

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

Polynuclear Aromatic Compounds by EPA Method 8310/Quality Control Great Lakes Analytical

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	<u>%</u>	Limit	%	Notes*
Batch: 0080065	Date Prepa	red: 8/3/00	!		Extract	tion Method: EPA	3550B			
Blank	0080065-BI	LK1								
Acenaphthene	8/4/00			ND	ug/kg	30.0				
Acenaphthylene	**			ND	10	200				
Anthracene	11			ND	11	30.0				
Benz (a) anthracene	n			ND	19	30.0				
Benzo (a) pyrene	1)			ND	11	30.0				
Benzo (b) fluoranthene	11			ND	**	30.0				
Benzo (ghi) perylene	n .			ND	10	30.0				
Benzo (k) fluoranthene	n			ND	n	30.0				
Chrysene	1¢			ND	10	30.0				
Dibenz (a,h) anthracene	н			ND	н	30.0				
Fluoranthene	#			ND	10	30.0				
Fluorene	10			ND	11	30.0				
Indeno (1,2,3-cd) pyrene	41			ND	**	30.0				
Naphthalene	H	•		ND	10	30.0				
Phenanthrene	17			ND	n	30.0				
Pyrene	11			ND	11	30.0				
Surrogate: Carbazole	"	172		119	"	37.1-163	69.2			
<u>LCS</u>	0080065-BS	1								
Acenaphthene	8/4/00	1370		709	ug/kg	23.5-114	51.8			
Acenaphthylene	н	1370		1220	n	44.8-131	89.1			
Anthracene	16	1370		1210	10	16.5-141	88.3			
Benz (a) anthracene	11	1370		1240	n	43.1-126	90.5			
Benzo (a) pyrene	11	1370		1110	19	44.8-119	81.0			
Benzo (b) fluoranthene	H	1370		1140	11	45.0-128	83.2			
Benzo (ghi) perylene	11	1370		1330	11	40.6-139	97.1			
Benzo (k) fluoranthene	H	1370		1300	N	46.4-133	94.9			
Chrysene	**	1370		1270	14	44.1-130	92.7			
Dibenz (a,h) anthracene	H	1370		1370	17	43.7-139	100			
Fluoranthene	11	1370		1280	n	49.8-128	93.4			
Fluorene	11	1370		1020	I ?	32.6-123	74.5			
Indeno (1,2,3-cd) pyrene	N	1370		1310	17	46.8-133	95.6			
Naphthalene	10	1370		1120	11	41.2-114	81.8			
Phenanthrene	n	1370		1080	n	39.4-120	78.8			
Pyrene	u	1370		1360		22.2-143	99.3			
Surrogate: Carbazole	<i>n</i>	172		164	"	37.1-163	95.3			

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project: 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

Polynuclear Aromatic Compounds by EPA Method 8310/Quality Control Great Lakes Analytical

[Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Levei	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike	<u>0080065-M</u>	S1 B(07381-01							
Acenaphthene	8/4/00	1330	42.1	824	ug/kg	10.0-113	58.8			
Acenaphthylene	H	1330	ND	1790	"	10.0-145	135			
Anthracene	H	1330	ND	878	n	17.2-117	66.0			
Benz (a) anthracene	n	1330	ND	950	17	18.3-116	71.4			
Benzo (a) pyrene	19	1330	ND	913	n	26.2-118	68.6			
Benzo (b) fluoranthene	н	1330	ND	884	10	22.4-126	66.5			
Benzo (ghi) perylene	11	1330	ND	1010	М	42.3-111	75.9			
Benzo (k) fluoranthene	H	1330	ND	975	11	27.2-118	73.3			
Chrysene	n	1330	ND	978	rt	10.0-131	73.5			
Dibenz (a,h) anthracene	10	1330	ND	1030	11	26.2-122	77.4			
Fluoranthene	11	1330	111	958	n	21.8-132	63.7			
Fluorene	n n	1330	50.4	829	H	12.6-113	58.5			
Indeno (1,2,3-cd) pyrene	11	1330	ND	969	II .	23.6-128	72.9			
Naphthalene	H	1330	30.8	887	n	10.0-128	64.4			
Phenanthrene	If	1330	398	1470	11	10.0-119	80.6		•	
Pyrene	H	1330	ND	1190	11	17.9-125	89.5			
Surrogate: Carbazole	"	166	······································	147	"	37.1-163	88.6			.,,
Matrix Spike Dup	0080065-MS	SD1 B0	07381-01							
Acenaphthene	8/4/00	1300	42.1	316	ug/kg	10.0-113	21.1	101	94.4	
Acenaphthylene	11	1300	ND	1630	11	10.0-145	125	83.7	7.69	
Anthracene	**	1300	ND	453	н	17.2-117	34.8	53.4	61.9	
Benz (a) anthracene	n	1300	ND	550	"	18.3-116	42.3	63.7	51.2	
Benzo (a) pyrene	11	1300	ND	529		26.2-118	40.7	54.4	51.1	
Benzo (b) fluoranthene	H	1300	ND	495	n	22.4-126	38.1	54.6	54.3	
Benzo (ghi) perylene	H	1300	ND	550	11	42.3-111	42.3	57.8	56.9	
Benzo (k) fluoranthene	u .	1300	ND	542		27.2-118	41.7	52.3	55.0	
Chrysene	n	1300	· ND	532	10	10.0-131	40.9	58.5	57.0	
Dibenz (a,h) anthracene	11	1300	ND	544	н	26.2-122	41.8	53.1	59.7	
Fluoranthene	11	1300	111	329	n	21.8-132	16.8	67.9	117	
Fluorene	11	1300	50.4	357	H	12.6-113	23.6	68.0	85.0	
Indeno (1,2,3-cd) pyrene	19	1300	ND	529	10	23.6-128	40.7	52.3	56.7	
Naphthalene	tt.	1300	30.8	369	10	10.0-128	26.0	57.7	85.0	
Phenanthrene	10	1300	398	813	rt	10.0-119	31.9	165	86.6	
Рутеле	H	1300	ND	600	**	17.9-125	46.2	80.0	63.8	
Surrogate: Carbazole	· · · · · · · · · · · · · · · · · · ·	163		80.3		37.1-163	49.3			

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services 42199 N. Lake Ave.

Project: 160 E. Illinois

Sampled: 7/27/00

Antioch, IL 60002

Project Number: N/A

Received: 7/31/00

Project Manager: Sean Beineke

Reported: 8/7/00 12:40

BTEX by EPA Method 5035/8021B/Quality Control Great Lakes Analytical

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0080005	Date Prepa	red: 8/1/00)		Extract	ion Method: EP.	A 5030B	[MeOH]		
Blank	0080005-B		•							
Benzene	8/2/00			ND	ug/kg	25.0				
Toluene	15			ND	11	25.0				
Ethylbenzene	H			ND	n	25.0				
Total Xylenes	н			ND	H	25.0	•			
Surrogate: 4-BFB	ıt	1000		968	"	74.3-166	96.8			
LCS	0080005-BS	<u>51</u>								
Benzene	8/1/00	1000		924	ug/kg	28.8-155	92.4			
Toluene	19	1000		947	11	45.7-141	94.7			
Ethylbenzene	н	1000		1050	30	52.3-143	105			
Total Xylenes	n	3000		3120	"	51.3-142	104			
Surrogate: 4-BFB	N	1000		977	,,	74.3-166	97.7			
LCS Dup	0080005-BS	:D1		,						
Benzene	8/1/00	1000		1110	ug/kg	28.8-155	111	66.2	18.3	
Toluene	n	1000		1050	11	45.7-141	105	48.6	10.3	
Ethylbenzene	19	1000		1160	18	52.3-143	116	45,3	9.95	
Total Xylenes	11	3000		3460	ig	51.3-142	115	45.5	10.0	
Surrogate: 4-BFB	н	1000		1010	п	74.3-166	101			

Great Lakes Analytical

*Refer to end of report for text of notes and definitions.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

Benchmark Environmental Services Project: 160 E. Illinois Sampled: 7/27/00
42199 N. Lake Ave. Project Number: N/A Received: 7/31/00
Antioch, IL 60002 Project Manager: Sean Beineke Reported: 8/7/00 12:40

Notes and Definitions

#	Note
Gl	The recovery of one or more analytes in the matrix QC (MS/MSD) associated with this sample is above the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.
G12	The reporting limit of this sample/analyte is elevated due to sample matrix and/or other effects.
G15	The relative percent difference (RPD) of one or more analytes in the matrix QC (MS/MSD) associated with this sample is above the laboratory's established acceptance limits. Refer to the included QC reports for more detail.
G2	The recovery of one or more analytes in the matrix QC (MS/MSD) associated with this sample is below the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.
O5	The recovery for this analyte is above the laboratory's established acceptance criteria.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

Great Lake Analytical

CHAIN OF CUSTODY REPORT

1380 Busch Parkway Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772

140 E. Ryan Road Oak Creek, WI 53154 (414) 570-9460 FAX (414) 570-9461

·																							
Client: Benchmale Environmental Service	s. Inc.	Bill To:	5	ame	9									TAT:	(5 D	AY	DAY	3 D/	AY 2	DAY	1 DAY	< 24	HRS.
Address: 42199 N. Cake Ave.		Addres	s:						_					DAT	E RE	SULTS							
														TEM	PERA	ATI IRE	LIPO	N RE	CEID				
Antroch, IL 6000 2 Report to: Sean Phone #: 647838	-5811	State & Program	n. Z	۷			Pho Fax	one i	#: (}				Dell	verab	le Pac	kage	<i>Need</i> □IIIB	led:				
	7 /	///			of Bo	ttlee	11 000	7.	<u>, /</u>		7	7	7.	-/-	7	7	7	7	,				
Project: /loo E . F/liho:'s Sampler: SB / W/	/ 8/	Q /			ervativ		sed			3)		A STATE OF THE STA			/ /	/ /				IPLE TROL			
BOILD IN THE		دِلاہ / جُئ	x //		/ /	/	Π	ð'/	X	-	\ \ \	3%	No p	עטופ			/ ,	12/	1	\ <u>\$</u>	,		-
PO/Quote #: FIELD ID, LOCATION	Silve	Sample Marray	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8/2/3	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$		9 4 80mg	J'a	<i>\$</i> ⟨ <i>\</i>	7i				/ /	/ /	/ /8		\$9/5 \$/8	35/		ORATO JUMBI	
1) Bricked in UST Buckfill 7/5		Soil	11			2	4	1	1											1	073		
2 C-1/Water Pump			11			2	4	1	J	1			1		1		\top		+	LZU	2/2		02
3/ C-2/Silver Recovery	,			-		2	2	_		-	1	1	\dashv	-	\dagger	\dagger	\top	+	+	-			03
		211	-+-			┪—				-		,		+	+	\dashv	+	+-	+-	+			00
System PID: 10	7	501				9	2			_	V	1			\perp	1		1	_	<u> </u>			04
5 PID:	}	1							١ ١				Ì		ĺ		1						·
6		 				+		 						_	+	+	+-	+	+-	+			
PID:																							
7													}	ł			-	İ	1				
PID: 8						+-	├			-		-	-		_	+	+	+-	┼-				
PID:]						ļi											
9		1			 	T	†								\top	1		1	1	1			
PID:		\- <u></u>	<u> </u>		- -	1_	_				<u> </u>			\bot	_	_	\perp	_	1_				
10	. .	1	} }	1	1	1							}	}	- {			1	1	1			
PID: PELHYQUISHED PATE RECTE PATE RECTE	IVED /			546		AELII	VQUI	SHED)	l	<u>. </u>	.	DAT	E	RI	CLIV	ED	1		$\int_{\bar{-}}$		DATE	····
	D 11/2	Mex	<u>~</u>	TIME	}								TIM		_(_	<u> </u>	يل	<u>/(</u>	=		7.	314	<u>U</u> _
RELINQUISHED DATE RECE	IVED			DATE TIME		RELII	NQUI:	SHEL)				DAT TIM			ECEIV	ED				<i>!</i>	DATE TIME	
COMMENTS:																							
																		PAC	GE			OF	